3

For Supervisor's use only

90780

Level 3 Chemistry, 2008

90780 Describe properties of particles and thermochemical principles

Credits: Five 9.30 am Friday 28 November 2008

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3–CHEMR.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

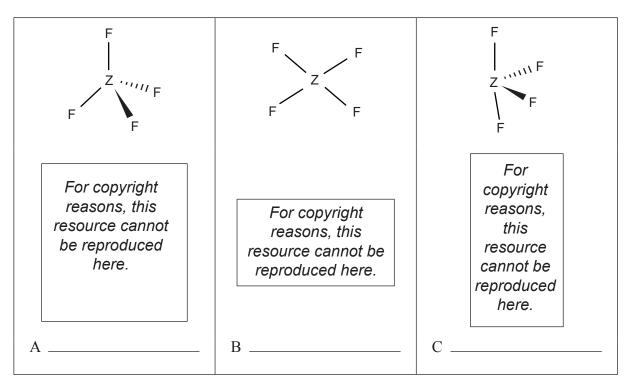
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

For Assessor's use only	Achievement Criteria				
Achievement	Achievement with Merit	Achievement with Excellence			
Describe properties of particles and thermochemical principles.	Explain and apply properties of particles and thermochemical principles.	Discuss properties of particles and thermochemical principles.			
Overall Level of Performance					

You are advised to spend 45 minutes answering the questions in this booklet.

Assessor's use only

QUESTION ONE: ATOMS, IONS AND THEIR PROPERTIES


(a)	(i)	Place the following species in order of increasing size: H, H ⁺ , H ⁻ .
	(ii)	Justify your answer.
(b)	Write Sc	the electron configuration using s , p , d notation for:
	Br ⁻	
	Mn ²⁺	
(c)	Acco	unt for the following:
	(i)	A bromine atom, Br, has more electrons than a scandium atom, Sc, but its radius is smaller.
	(ii)	A bromine atom, Br, is smaller than a scandium atom, Sc, but its ionisation energy is larger.

QUESTION TWO: MOLECULES, IONS AND THEIR PROPERTIES

Assessor's use only

(a) The drawings below are three possible shapes for a molecule ZF₄, where 'Z' represents the central element. 'Z' has lower electronegativity than F.

Name the shapes represented by the three diagrams.

www.askthetachemistryhelp.com/geometry2.html

(c) Draw the Lewis diagram for the ion BrF_4^- .

Assessor's use only

(d)	(i)	Choose the page.	e structure	e for the B	rF ₄ ⁻ ion fro	m those pict	ured in part (a)), on the previous
	(ii)	Give a reas	son for yo	our answei	.			
	(iii)	Circle the molecule Z	element, t ZF ₄ that h	from the fo as shape C	ollowing list (see part(a	t, which wou	ald be the cent	ral element Z in a
		Be	C	Se	Si	Xe		
		Justify you	ır answer.					

Assessor's	
use only	

(e) Account for the difference in the boiling points for the following pairs of compounds by comparing the main forces between the molecules in each case.

i) [Boiling point / °C	Molar mass / g mol ⁻¹
	Compound A, CH ₃ OH	65	32.0
	Compound B, CH ₃ SH	6	48.1
L			
-			

(ii)		Boiling point / °C	Molar mass / g mol ⁻¹
	Compound C, H ₃ C-C-CH ₃	58	58.0
	Compound D, H ₃ C-CH-CH ₃ CH ₃	-12	58.0

QUESTION THREE: ENTHALPY CHANGES

Assessor's use only

- (a) Urea, $(NH_2)_2CO$, which is a white crystalline solid, is widely used as a fertiliser. Write the equation for which the enthalpy change is:
 - (i) the enthalpy of formation, $\Delta_f H^\circ$, for urea
 - (ii) the enthalpy of fusion, $\Delta_{\text{fus}}H^{\circ}$, for urea
- (b) Urea breaks down in moist soil into carbon dioxide and ammonia.

$$(NH_2)_2CO(s) + H_2O(\ell) \rightarrow CO_2(g) + 2NH_3(g)$$

Calculate the enthalpy change for this reaction, $\Delta_r H$, using the information below.

(c) Methylhydrazine, N₂H₃CH₃, can be used as a fuel.

Assessor's use only

The structural formula for methylhydrazine is	/	H -N C-H
		н н

(1)	Define the term bond enthalpy.

(ii) Use the bond enthalpies given in the table below to calculate the energy released when one mole of methylhydrazine vapour is burned.

$$N_2H_3CH_3(g) + 2\frac{1}{2}O_2(g) \rightarrow CO_2(g) + N_2(g) + 3H_2O(g)$$

Bond	Bond enthalpy / kJ mol ⁻¹
N-N	163
N-H	391
N-C	286
N≡N	941

Bond	Bond enthalpy / kJ mol ⁻¹
C=O	804
О–Н	463
С–Н	414
O=O	498

90780

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question number	